Letter to the Editor: NMR assignment of the A form of the pheromone-binding protein of *Bombyx mori*

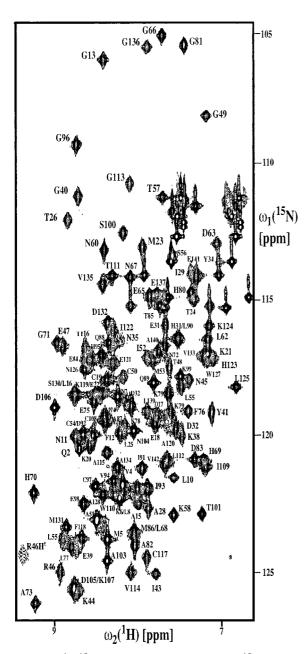
Reto Horst^a, Fred Damberger^a, Guihong Peng^b, Larisa Nikonova^b, Walter S. Leal^{b,c} & Kurt Wüthrich^{a,*}

^aInstitut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland; ^bNational Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki 305-8634, Japan; ^cDepartment of Entomology, University of California at Davis, 95616 Davis, CA, U.S.A.

Received 29 September 2000; Accepted 9 October 2000

Key words: Bombyx mori, NMR assignments, pheromone-binding protein, triple resonance experiments

Biological context


The pheromone-binding protein from Bombyx mori (BmPBP) is present at high concentration in the lymph of insect olfactory sensilla, and transports a hydrophobic pheromone from the periphery of the sensillum to the olfactory receptors. BmPBP undergoes a pHdependent conformational change between two forms A ('acidic form', observed at pH below 5.0) and B ('basic form', observed at pH above 6.0), which appears to have a direct relation to its biological function (Damberger et al., 2000). In the crystal structure of the B form complexed with the pheromone, the hydrophobic ligand is completely shielded from the solvent (Sandler et al., 2000). We have started NMR structure determinations of the A form and the ligandfree B form in order to obtain further insight into structure-function correlations of BmPBP. Here we report complete sequence-specific assignments for the A form of BmPBP.

Methods and experiments

Recombinant BmPBP was expressed in *E. coli*. Details of the protein purification have been published elsewhere (Damberger et al., 2000). The NMR sample contained 10 mg of uniformly ${}^{13}C/{}^{15}N$ -labeled BmPBP, which had been lyophilized from H₂O, in 0.5 ml of 50 mM potassium phosphate in 95% H₂O/5% D₂O at pH 4.5 with 2 mM NaN₃.

NMR measurements were performed at 20 °C on a Bruker DRX 600 spectrometer. Proton chemical shifts are referenced to internal 3-(trimethyl-silyl)propane- $1,1,2,2,3,3-d_6$ -sulfonic acid, sodium salt (DSS). ¹³C and ¹⁵N chemical shifts are referenced indirectly to DSS, using the absolute frequency ratios. Sequencespecific assignments (Wüthrich, 1986) of the polypeptide backbone resonances were initially obtained using 2D [15N,1H]-HSQC, 3D HNCA, 3D HNCACB, 3D CBCA(CO)NH and 3D HNCO spectra (Bax and Grzesiek, 1993), and residual gaps and ambiguities were resolved using sequential NOEs measured in 2D homonuclear and 3D heteronuclear-resolved [¹H,¹H]-NOESY spectra (Wüthrich, 1986). The chemical shifts of the $\alpha CH-\beta CH_n$ fragments provided the starting points for nearly complete ¹H and ¹³C assignments of all CH_n moieties in non-aromatic side-chains, using 2D ct-[¹³C,¹H]-HSQC, 3D H(C)CH-TOCSY and 3D (H)CCH-COSY experiments (Gehring and Ekiel, 1998). ¹H spin systems of the aromatic rings of Trp, Tyr and Phe were identified using 3D TROSY-(H)CCH-COSY (Pervushin et al., 1998) and a TROSY version of the proton-relayed 2D [¹³C,¹H]-COSY experiment (Zerbe et al., 1996), i.e., 2D ¹H-TOCSYrelayed ct-[¹³C,¹H]-TROSY (to be described elsewhere). Sequence-specific assignments of aromatic side chains were obtained using NOEs between the aromatic protons and the βCH_2 group or the α -proton (Wüthrich, 1986), using 3D ¹³C-resolved [¹H,¹H]-NOESY. Stereospecific assignments for the isopropyl methyls of Val and Leu were obtained using biosynthetically directed fractional ¹³C-labeling (Senn et al., 1989) and 2D [¹³C,¹H]-COSY. Methionine methyl

^{*}To whom correspondence should be addressed. Fax: +4116331151.

Figure 1. $[^{1}H, ^{15}N]$ -COSY spectrum of uniformly ^{15}N -enriched BmPBP in 95% H₂O/5% D₂O (protein concentration = 1 mM, T = 293 K, pH = 4.5). Backbone resonance assignments are indicated by the one-letter amino acid code and the sequence number. The backbone resonance of Ser 9 and the side-chain resonances of Trp 110 and Trp 127 are outside of the region shown.

groups were assigned in the course of the structure determination using $3D^{13}C$ -resolved [¹H,¹H]-NOESY. The NMR spectra were processed using the program PROSA (Güntert et al., 1992), and the spectral analysis was supported with the XEASY software package (Bartels et al., 1995).

Extent of assignments and data deposition

All ¹H, ¹⁵N and ¹³C polypeptide backbone resonances were assigned except for Ser 1, for which only the C^{α} H group was assigned. The amino acid side-chain assignments of non-labile hydrogens are complete except for CH[§]₃ of Met 5 and Met 23, and C^ζH^ζ of Phe 118. For Val 4, only one proton resonance and one carbon resonance were observed for the isopropyl methyl groups. The labile side-chain protons of Asn, Gln, Trp and Arg were completely assigned, except for N^{§1}H^{§1} of Trp 37 and H^η of Arg 46, whereby individual proton assignments were obtained for all 13 NH₂ groups of Asn and Gln. The ¹H, ¹³C and ¹⁵N chemical shifts have been deposited in the Bio-MagResBank (http://www.bmrb.wisc.edu) under the BMRB accession number 4849.

Acknowledgements

Financial support was obtained from the Komission für Technologie und Inovation KTI (project Nr. 3392.1) and the Japanese Program for Promotion of Basic Research activities for Innovative Biosciences.

References

- Bartels, C., Xia, T., Billeter, M., Güntert, P. and Wüthrich, K. (1995) *J. Biomol. NMR*, **6**, 1–10.
- Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.
- Damberger, F., Nikonova, L., Horst, R., Peng, G., Leal, W.S. and Wüthrich, K. (2000) *Protein Sci.*, 9, 1038–1041.
- Gehring, K. and Ekiel, I. (1998) J. Magn. Reson., 135, 185-193.
- Güntert, P., Dötsch, V., Wider, G. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 619–629.
- Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1998) J. Am. Chem. Soc., 120, 6394–6400.
- Sandler, B.H., Nikonova, L., Leal, W.S. and Clardy, J. (2000) *Chem. Biol.*, **7**, 143–151.
- Senn, H., Werner, B., Messerle, B.A., Weber, C., Traber, R. and Wüthrich, K. (1989) *FEBS Lett.*, **249**, 113–118.
- Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.
- Zerbe, O., Szyperski, T., Ottiger, M. and Wüthrich, K. (1996) J. Biomol. NMR, 7, 99–106.